Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract. The continuous ice core record extends 800 000 years into the past, covering the period of 100 000-year glacial cycles but not the transition from 40 000-year glacial cycles (the mid-Pleistocene transition, 1.2–0.7 million years ago). A primary goal of the International Partnerships in Ice Core Sciences is therefore to retrieve a 1.5-million-year-old continuous ice core, increasing our understanding of this major change in the climate system and thus of fundamental climate forcings and feedbacks. However, complex glacial processes, limited bedrock data, and young basal ice in previous cores necessitate careful reconnaissance studies before extracting a full core. Ice borehole optical logging reflects the ice dust content and may be used to date ice quickly and inexpensively if a reference record is known. Here we explore the relationship between ice dust records and well-dated marine dust records from sediment cores in the southern Atlantic and Pacific oceans, which lie along paths of dust sources to Antarctica. We evaluate how representative these records are of Antarctic dust both through the existing ice core record and during the older target age range, suggesting that a newly published 1.5-million-year record from Site U1537 near South America is likely the most robust predictor of the Oldest Ice dust signal. We then assess procedures for rapid dating of potential Oldest Ice sites, noting that the ability to detect dating errors is an essential feature. We emphasize that ongoing efforts to identify, recover, date, and interpret an Oldest Ice core should use care to avoid unfounded assumptions about the 40 kyr world based on the 100 kyr world.more » « less
-
Abstract Constraining the magnitude of past hydrological change may improve understanding and predictions of future shifts in water availability. Here we demonstrate that water-table depth, a sensitive indicator of hydroclimate, can be quantitatively reconstructed using Kr and Xe isotopes in groundwater. We present the first-ever measurements of these dissolved noble gas isotopes in groundwater at high precision (≤0.005‰ amu−1; 1σ), which reveal depth-proportional signals set by gravitational settling in soil air at the time of recharge. Analyses of California groundwater successfully reproduce modern groundwater levels and indicate a 17.9 ± 1.3 m (±1 SE) decline in water-table depth in Southern California during the last deglaciation. This hydroclimatic transition from the wetter glacial period to more arid Holocene accompanies a surface warming of 6.2 ± 0.6 °C (±1 SE). This new hydroclimate proxy builds upon an existing paleo-temperature application of noble gases and may identify regions prone to future hydrological change.more » « less
An official website of the United States government
